How to AI (Almost) Anything Lecture 4 – Multimodal AI & Alignment

Paul Liang Assistant Professor MIT Media Lab & MIT EECS

https://pliang279.github.io ppliang@mit.edu @pliang279

Assignments for This Coming Week

For project:

- I gave feedback and assigned primary TA.
- Meet with me and primary TA every other week.

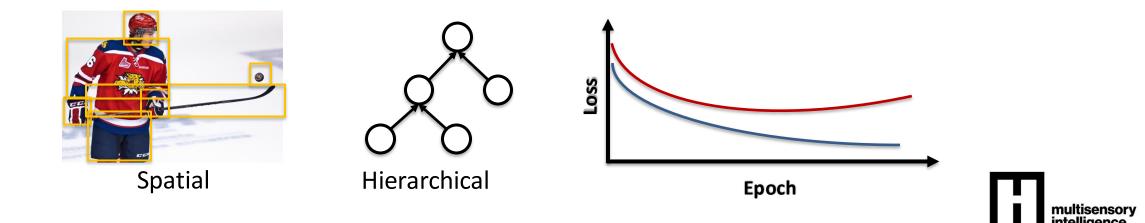
Reading assignment due tomorrow Wednesday (3/5).

This Thursday (3/6): second reading discussion on modern Al architectures.

Scaling laws for multimodal models Not all tokens are all you need?

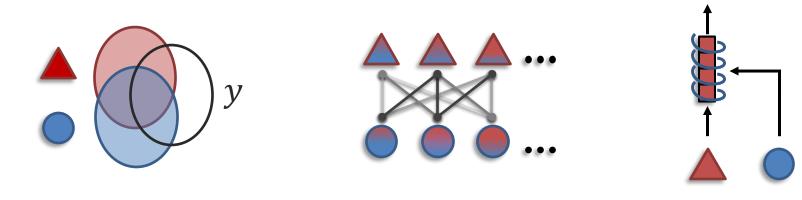
Module 1: Foundations of AI

Week 1 (2/4): Introduction to AI and AI research Week 2 (2/11): Data, structure, and information Week 4 (2/25): Common model architectures



Module 2: Foundations of multimodal AI

Week 5 (3/4): Multimodal connections and alignment Week 6 (3/11): Multimodal interactions and fusion Week 7 (3/18): Cross-modal transfer Week 8 – No class, spring break



ν

Today's lecture

5

Introduction to multimodal AI

Principles of heterogeneity, connections, interactions

Core multimodal challenges

Multimodal alignment

[credit: some slides in this lecture were co-developed with Louis-Philippe Morency for CMU course 11-777]

Behavioral Study of Multimodal

Language and gestures

David McNeill

"For McNeill, gestures are in effect the speaker's thought in action, and integral components of speech, not merely accompaniments or additions."

McGurk effect

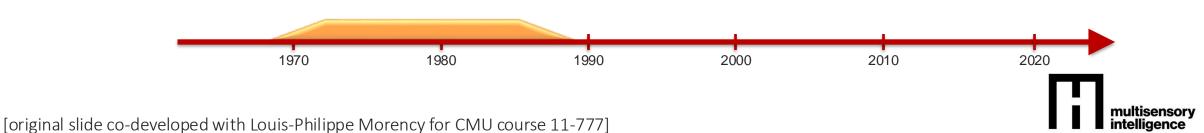
Behavioral Study of Multimodal

Language and gestures

David McNeill

"For McNeill, gestures are in effect the speaker's thought in action, and integral components of speech, not merely accompaniments or additions."

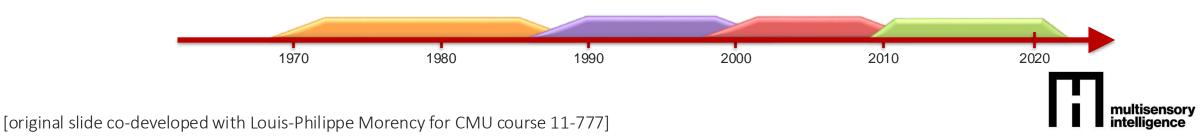
McGurk effect



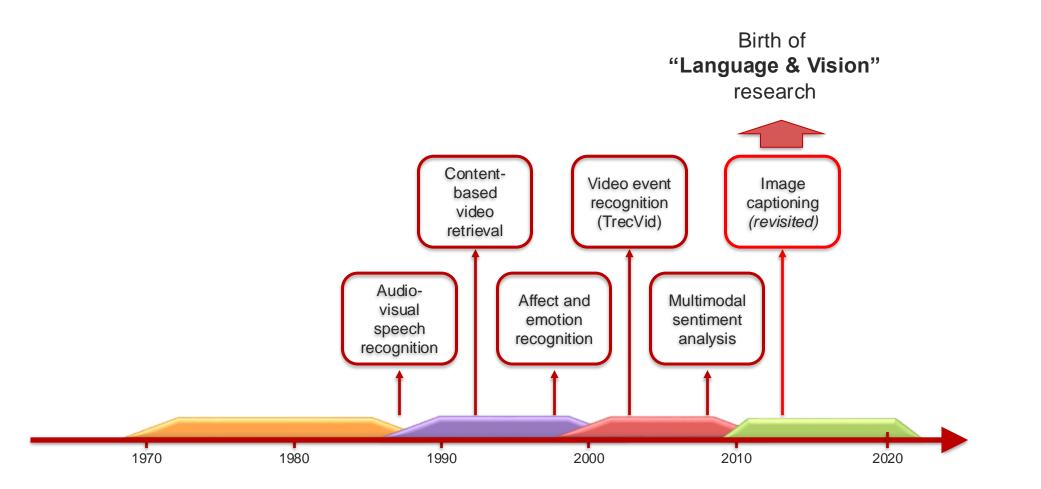
Prior Research in Multimodal

Four eras of multimodal research

- > The "behavioral" era (1970s until late 1980s)
- > The "computational" era (late 1980s until 2000)
- \succ The "interaction" era (2000 2010)
- The "deep learning" era (2010s until …)
 The "foundation model" era (2020s until …)

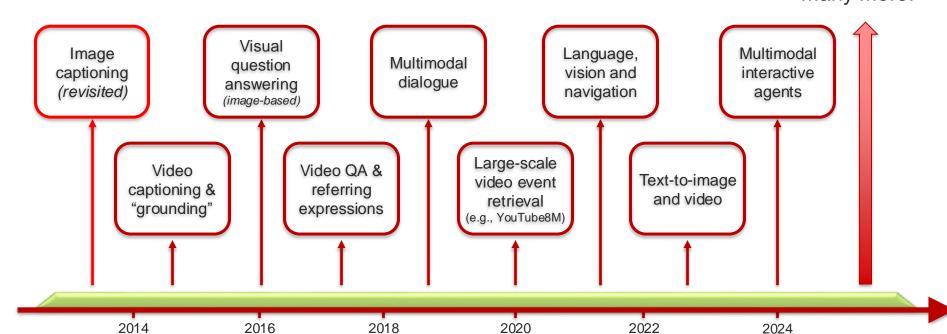


Multimodal Research Tasks



[original slide co-developed with Louis-Philippe Morency for CMU course 11-777]

Multimodal Research Tasks



... and many many many more!

[original slide co-developed with Louis-Philippe Morency for CMU course 11-777]

Multimodal AI – Surveys, Tutorials, Courses

Foundations and Recent Trends in Multimodal Machine Learning

Paul Liang, Amir Zadeh and Louis-Philippe Morency

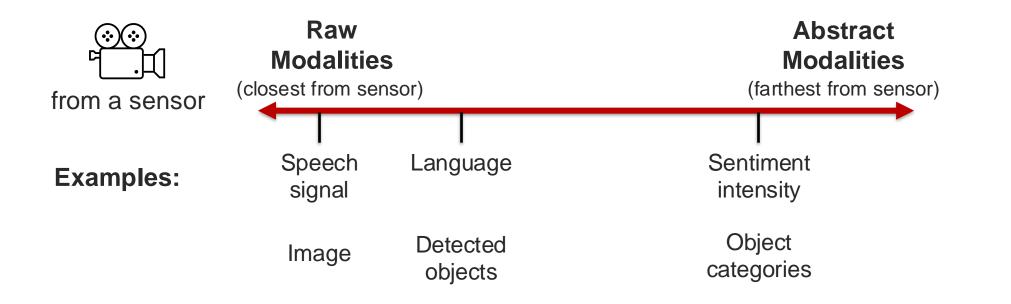
☑ 6 core challenges
 ☑ 50+ taxonomic classes
 ☑ 700+ referenced papers
 https://arxiv.org/abs/2209.03430

Tutorials: ICML 2023, CVPR 2022, NAACL 2022

What is a Modality?

Modality

Modality refers to the way in which something expressed or perceived.



A dictionary definition...

Multimodal: with multiple modalities

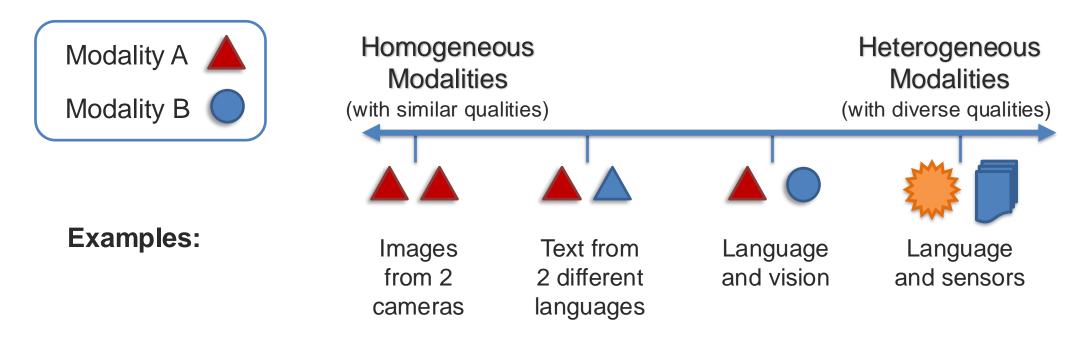
A research-oriented definition...

Multimodal is the science of

heterogeneous and interconnected data Connected + Interacting

Heterogeneous Modalities

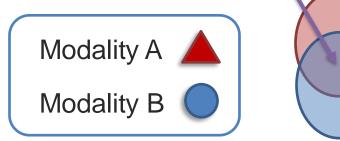
Information in different modalities shows diverse qualities, structures, & representations.

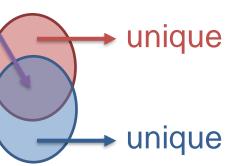


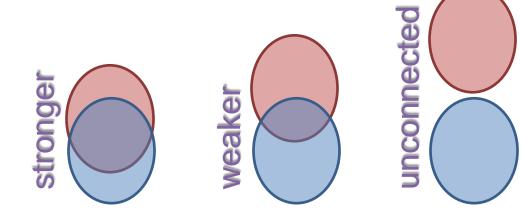
Abstract modalities are more likely to be homogeneous

Connected Modalities

Shared information that relates modalities



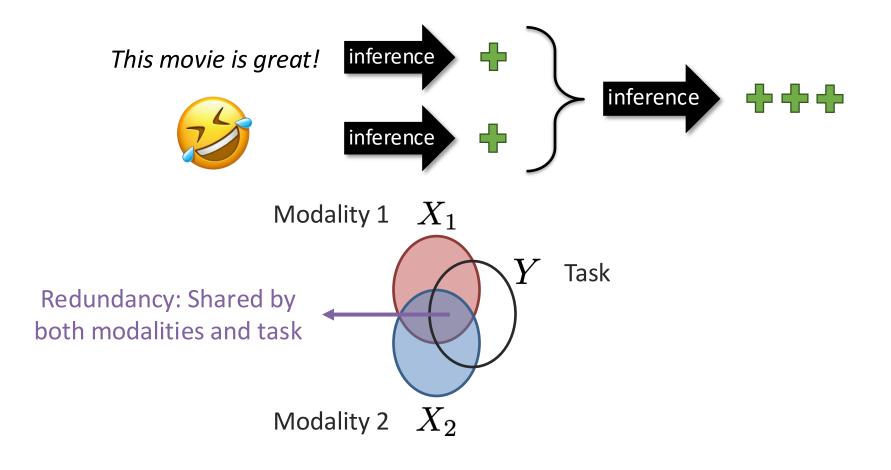




A teacup on the right of a laptop in a clean room.

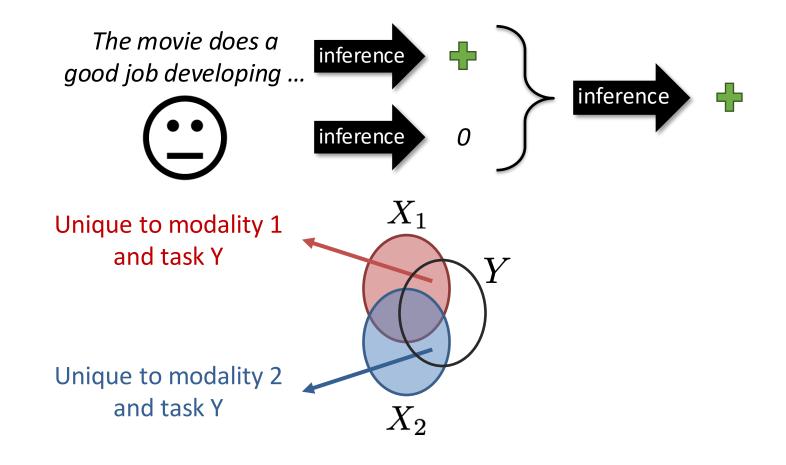
Interacting Modalities

Interactions: How modalities *combine* to provide information for a task.



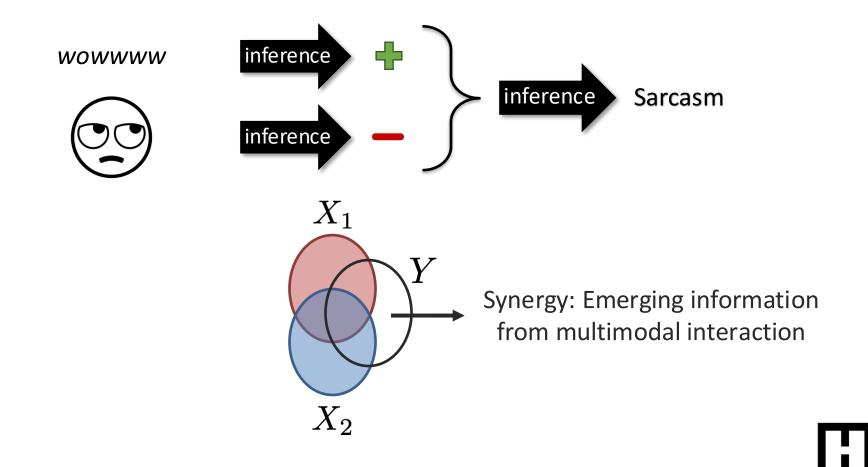
Interacting Modalities

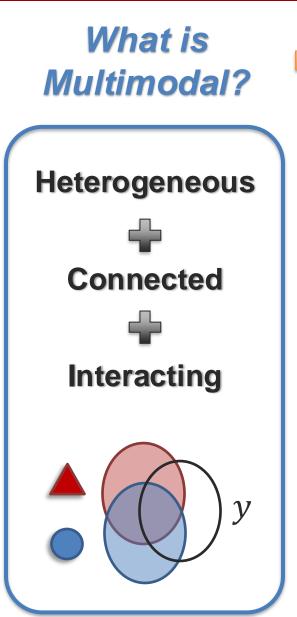
Interactions: How modalities *combine* to provide information for a task.



Interacting Modalities

Interactions: How modalities *combine* to provide information for a task.



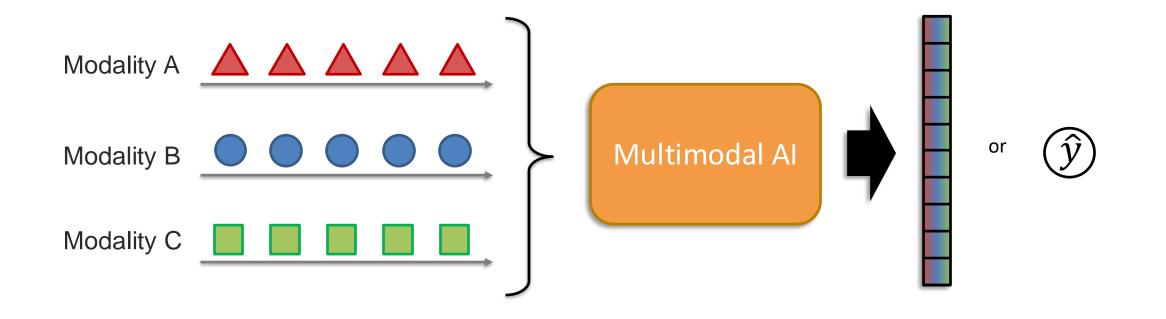


Multimodal is the scientific

study of heterogeneous and

interconnected data 😊

Multimodal AI Challenges

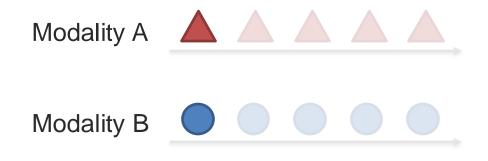


Challenge 1: Representation

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

> This is a core building block for most multimodal modeling problems!

Individual elements:

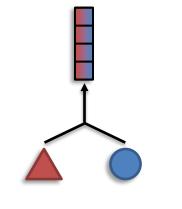


Challenge 1: Representation

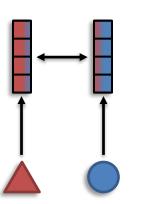
Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities.

Sub-challenges:

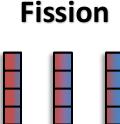
Fusion

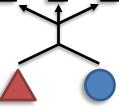


Coordination



modalities = # representations





modalities < # representations</pre>

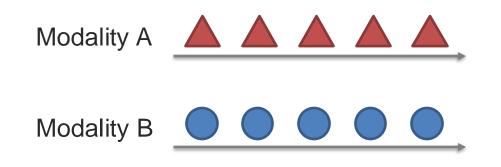
modalities > # representations

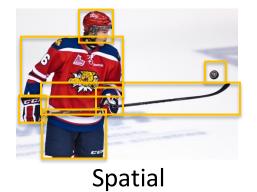
Challenge 2: Alignment

Definition: Identifying and modeling cross-modal connections between all elements of multiple modalities, building from the data structure.

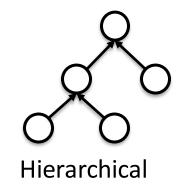
Most modalities have internal structure with multiple elements

Elements with temporal structure:





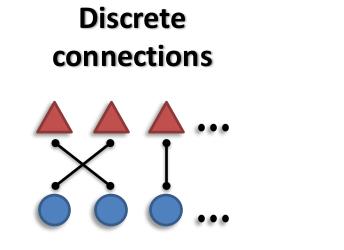
Other structured examples:



Challenge 2: Alignment

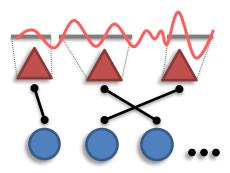
Definition: Identifying and modeling cross-modal connections between all elements of multiple modalities, building from the data structure.

Sub-challenges:



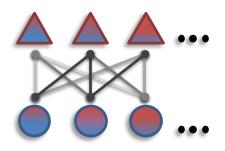
Explicit alignment (e.g., grounding)

Continuous alignment



Granularity of individual elements

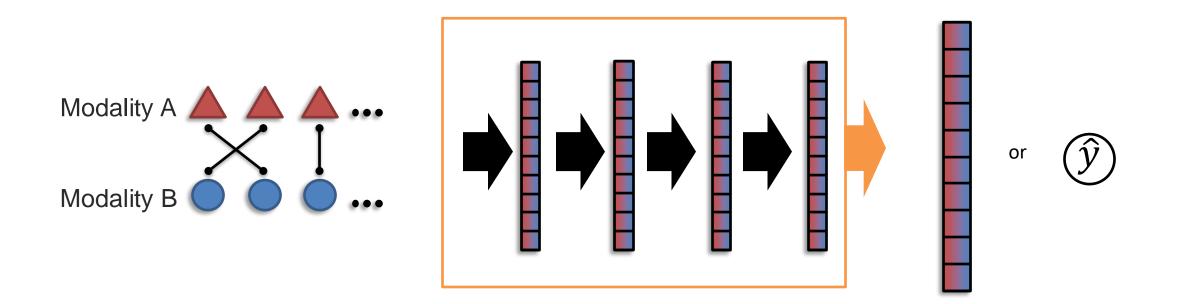
Contextualized representation



Implicit alignment + representation

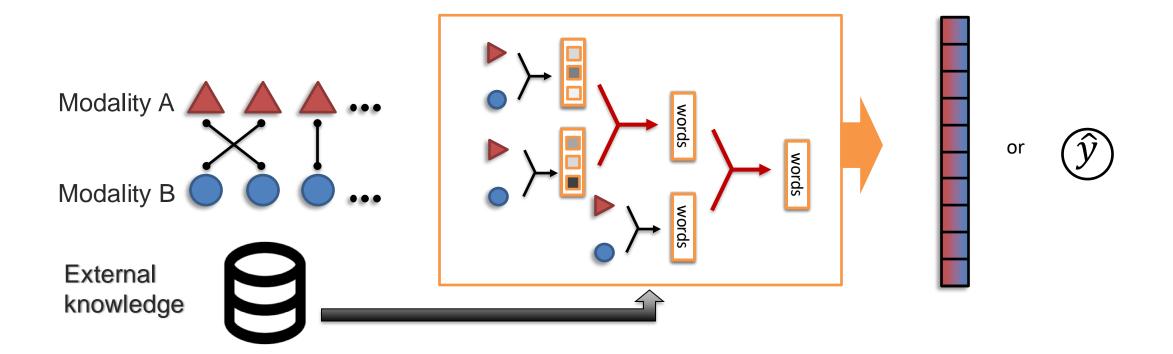
Challenge 3: Reasoning

Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure.



Challenge 3: Reasoning

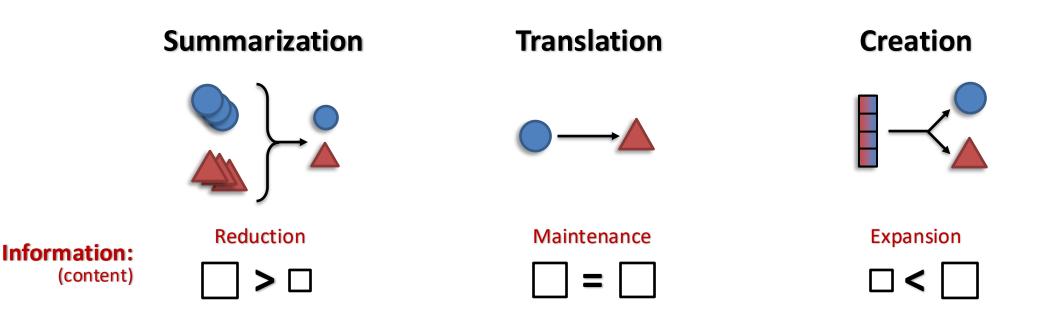
Definition: Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure.



Challenge 4: Generation

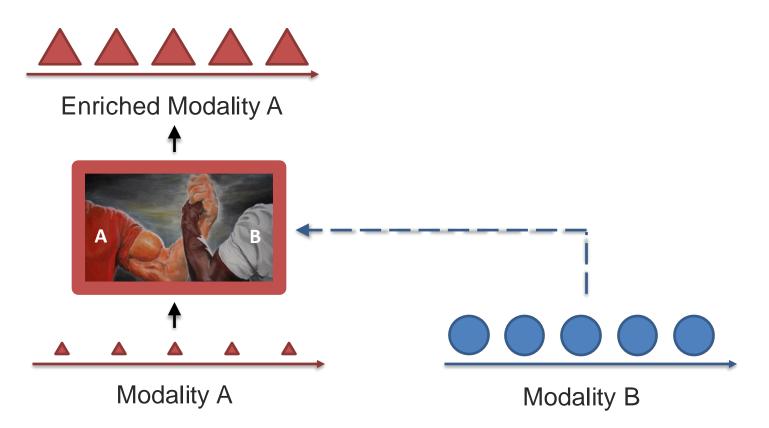
Definition: Learning a generative process to produce raw modalities that reflects cross-modal interactions, structure, and coherence.

Sub-challenges:



Challenge 5: Transference

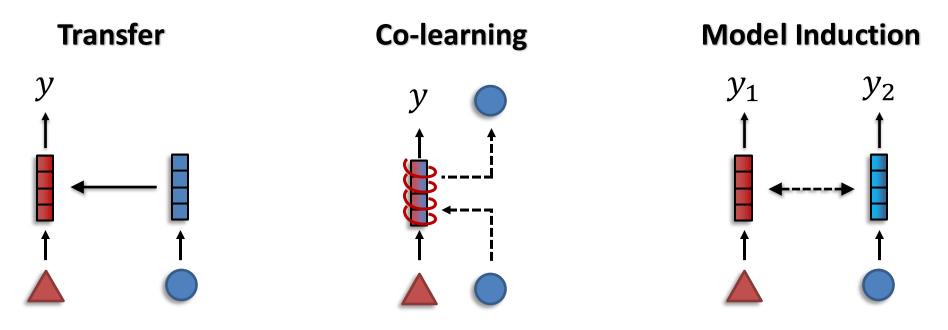
Definition: Transfer knowledge between modalities, usually to help the target modality which may be noisy or with limited resources.



Challenge 5: Transference

Definition: Transfer knowledge between modalities, usually to help the target modality which may be noisy or with limited resources.

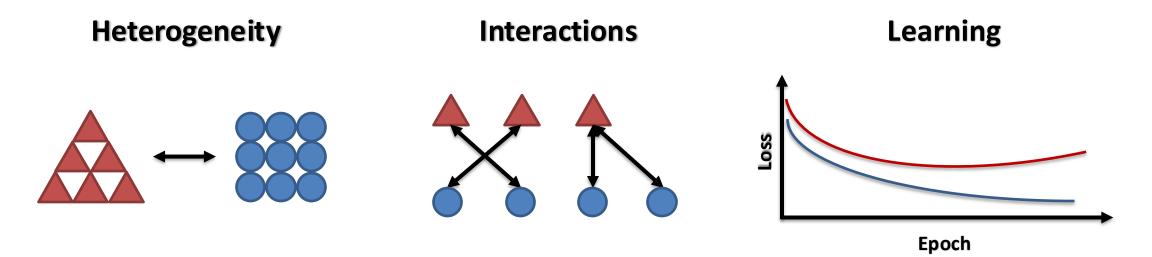
Sub-challenges:



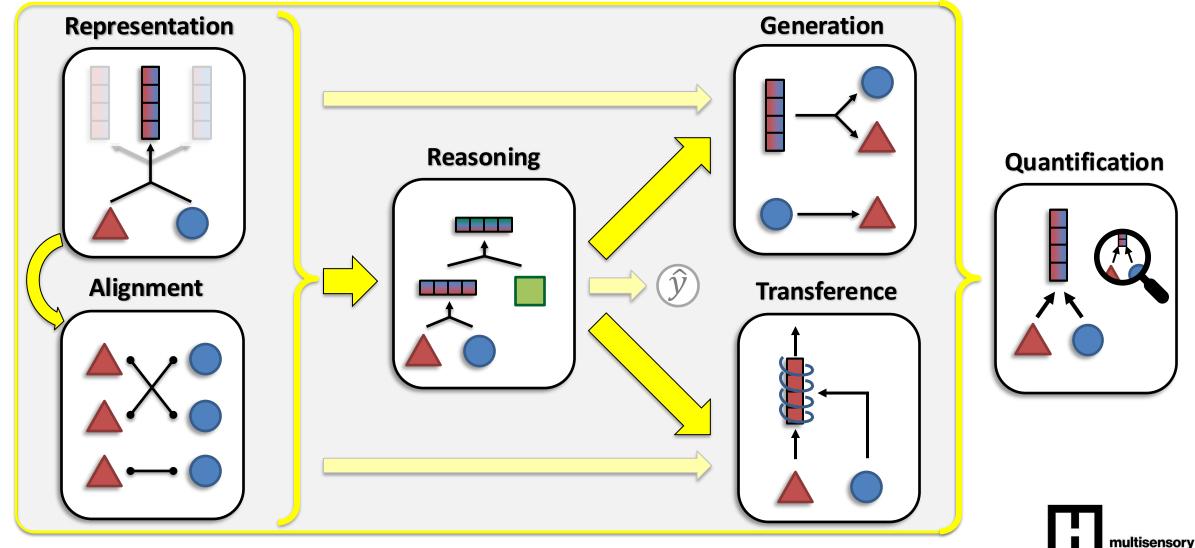
Challenge 6: Quantification

Definition: Empirical and theoretical study to better understand heterogeneity, cross-modal interactions, and the multimodal learning process.

Sub-challenges:



Summary of Core Multimodal Challenges

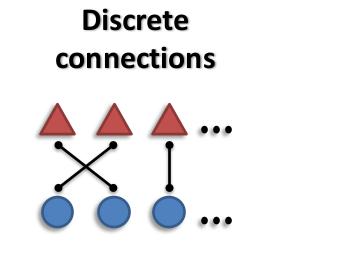


intelligence

Challenge 2: Alignment

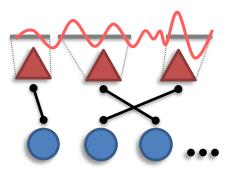
Definition: Identifying and modeling cross-modal connections between all elements of multiple modalities, building from the data structure.

Sub-challenges:



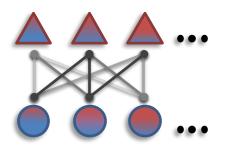
Explicit alignment (e.g., grounding)

Continuous alignment



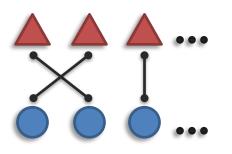
Granularity of individual elements

Contextualized representation



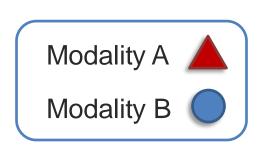
Implicit alignment + representation

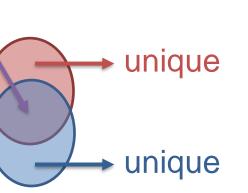
Challenge 2a: Discrete Alignment

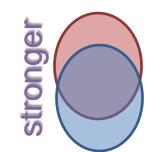


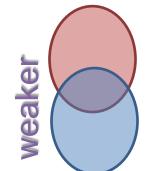
Definition: Identify and model connections between elements of multiple modalities

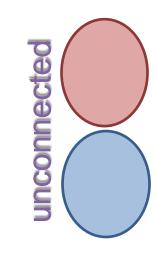
Shared information that relates modalities



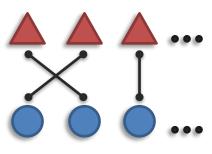




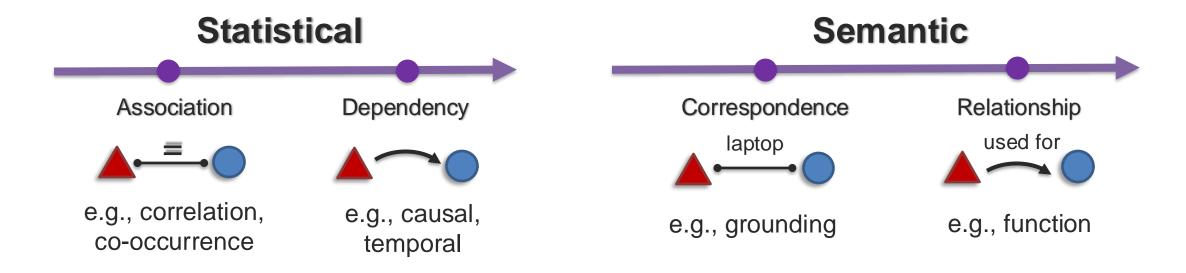




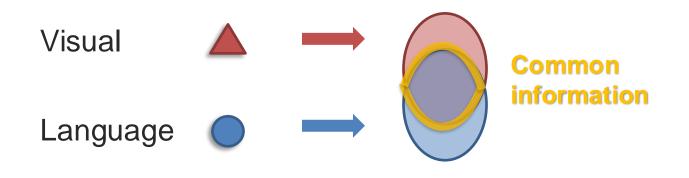
Modality Connections



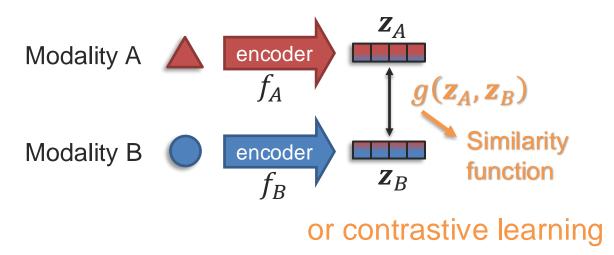
Definition: Tying language (words, phrases,...) to non-linguistic elements, such as the visual world (objects, people, ...)



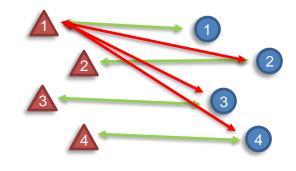
Modality Connections



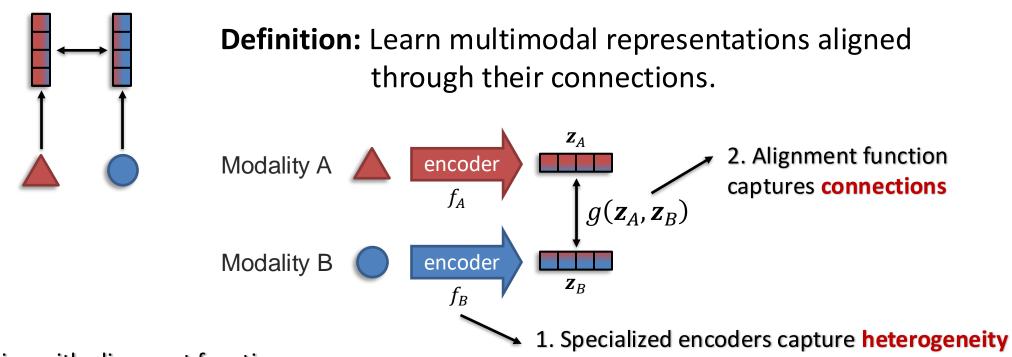
Learning aligned representations:



Supervision: Paired data



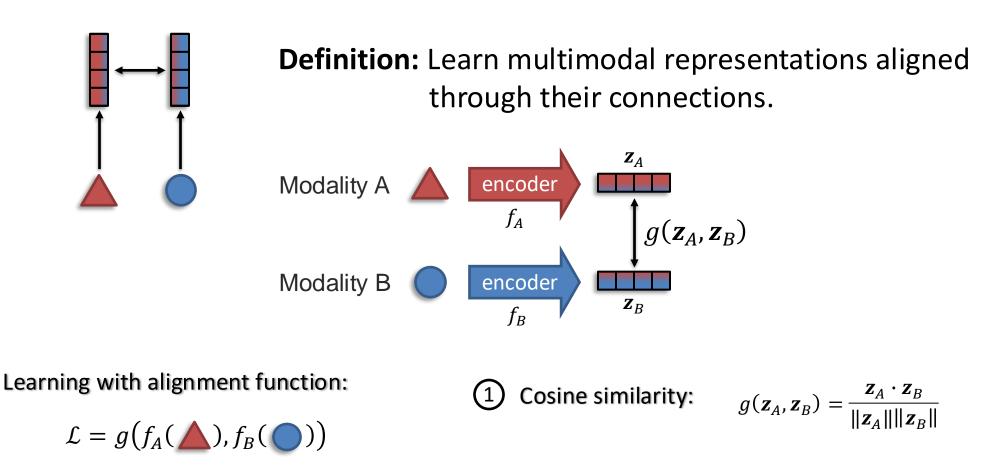
Aligned Representations



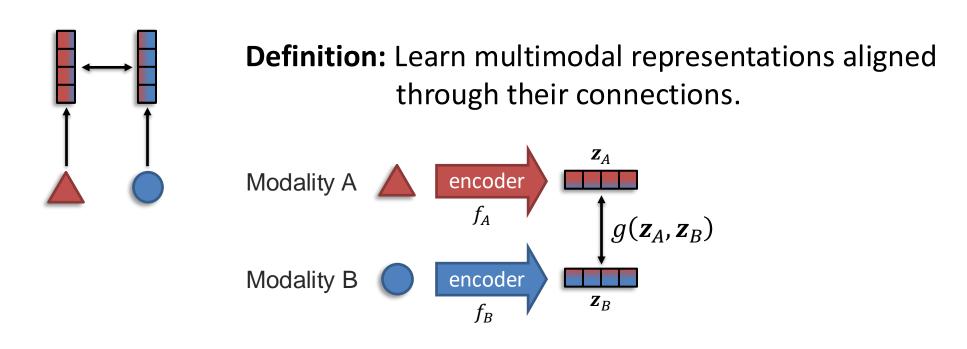
Learning with alignment function:

$$\mathcal{L} = g(f_A(\bigtriangleup), f_B(\bigcirc))$$

with model parameters θ_g , θ_{f_A} and θ_{f_B}



with model parameters θ_g , θ_{f_A} and θ_{f_B}



Learning with alignment function:

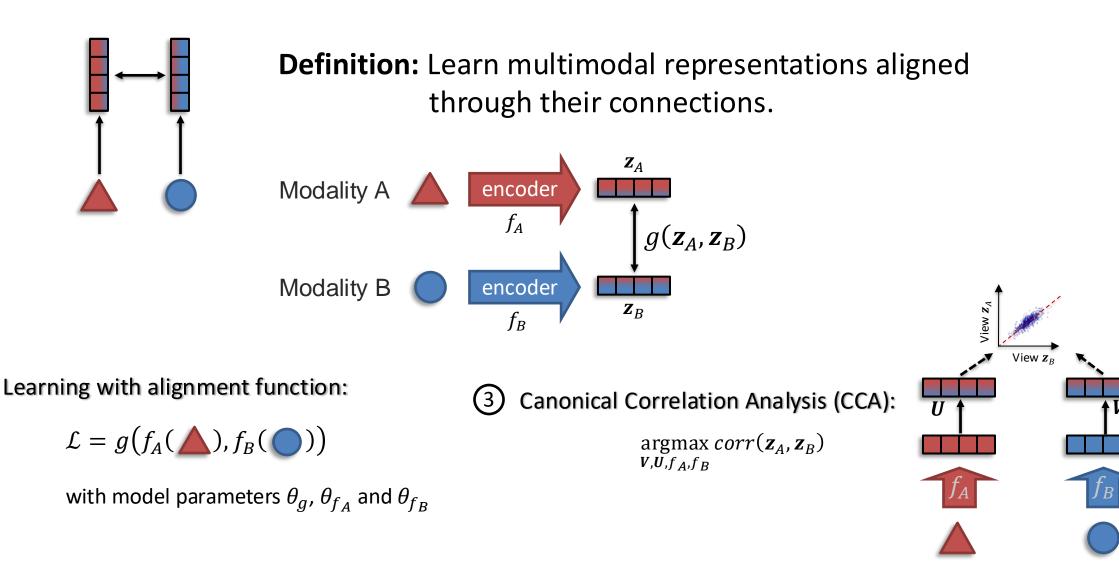
$$\mathcal{L} = g(f_A(\bigtriangleup), f_B(\bigcirc))$$

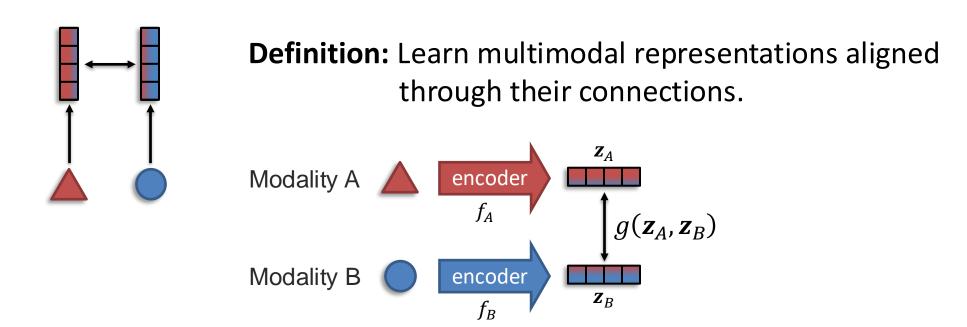
with model parameters θ_g , θ_{f_A} and θ_{f_B}

2 Kernel similarity functions:

$$g(\mathbf{z}_{A}, \mathbf{z}_{B}) = k(\mathbf{z}_{A}, \mathbf{z}_{B})$$
• Linear
• Polynomial
• Exponential
• RBF
multisensory

intelligence





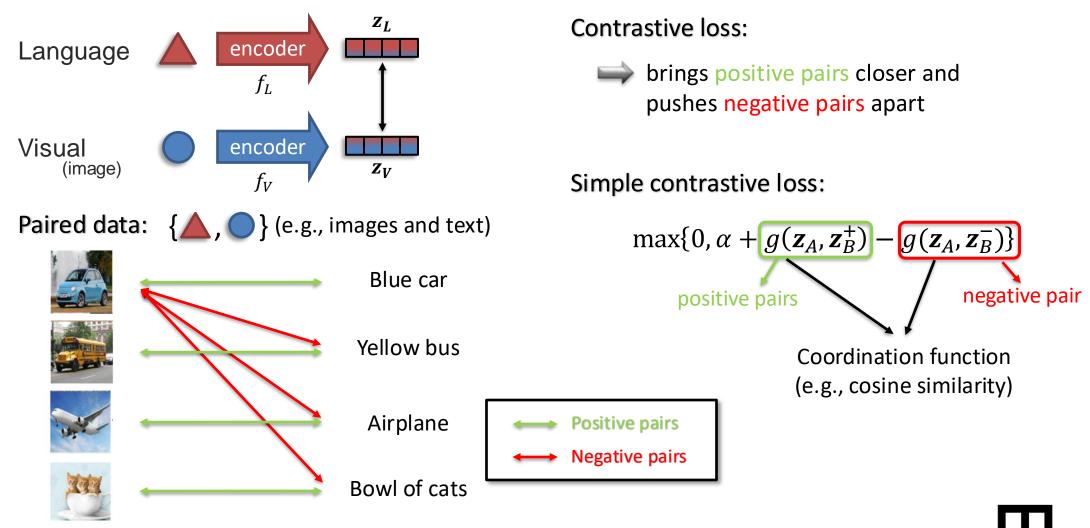
Learning with alignment function:

$$\mathcal{L} = g(f_A(\bigtriangleup), f_B(\bigcirc))$$

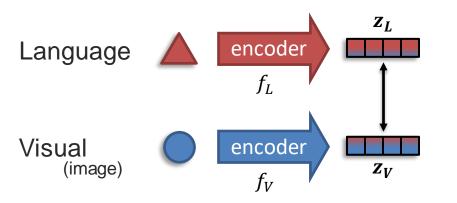
with model parameters θ_g , θ_{f_A} and θ_{f_B}

4 Order, hierarchy, pairwise relationships.

Alignment with Contrastive Learning

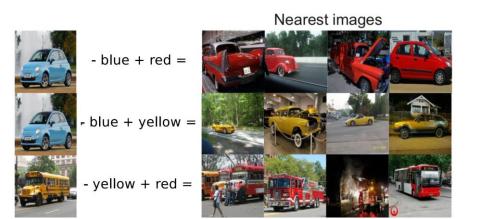


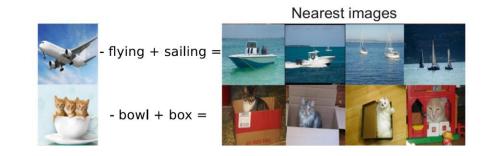
Visual-Semantic Embeddings



Contrastive loss:

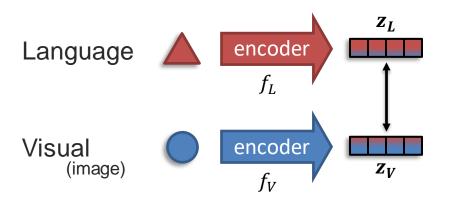
brings positive pairs closer and pushes negative pairs apart



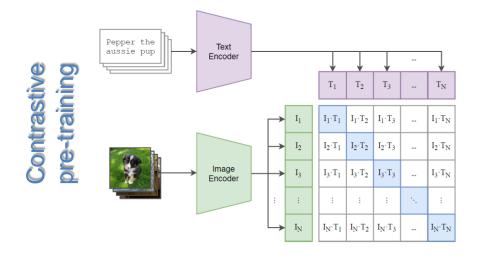


[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models. NeurIPS 2014]

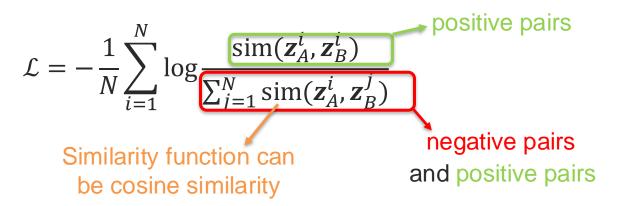
Contrastive Language Image Pretraining

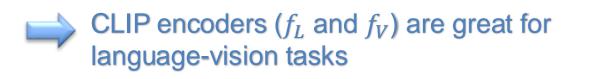


Positive and negative pairs:



Popular contrastive loss: InfoNCE





[Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021]

CLIP (Contrastive Language–Image Pre-training)

SUN397

television studio (90.2%) Ranked 1 out of 397

✓ a photo of a television studio.

× a photo of a podium indoor.

× a photo of a conference room.

× a photo of a lecture room.

. × a photo of a control room.

CLEVR COUNT

4 (17.1%) Ranked 2 out of 8

×	a photo of 3 objects.
~	a photo of 4 objects.

× a photo of 5 objects.

× a photo of 6 objects.

× a photo of 10 objects.

IMAGENET-R (RENDITION)

Siberian Husky (76.0%) Ranked 1 out of 200

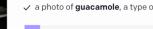
✓ a photo of a siberian husky.

× a photo of a german shepherd dog.

- × a photo of a collie
- × a photo of a border collie

F00D101

guacamole (90.1%) Ranked 1 out of 101 labels

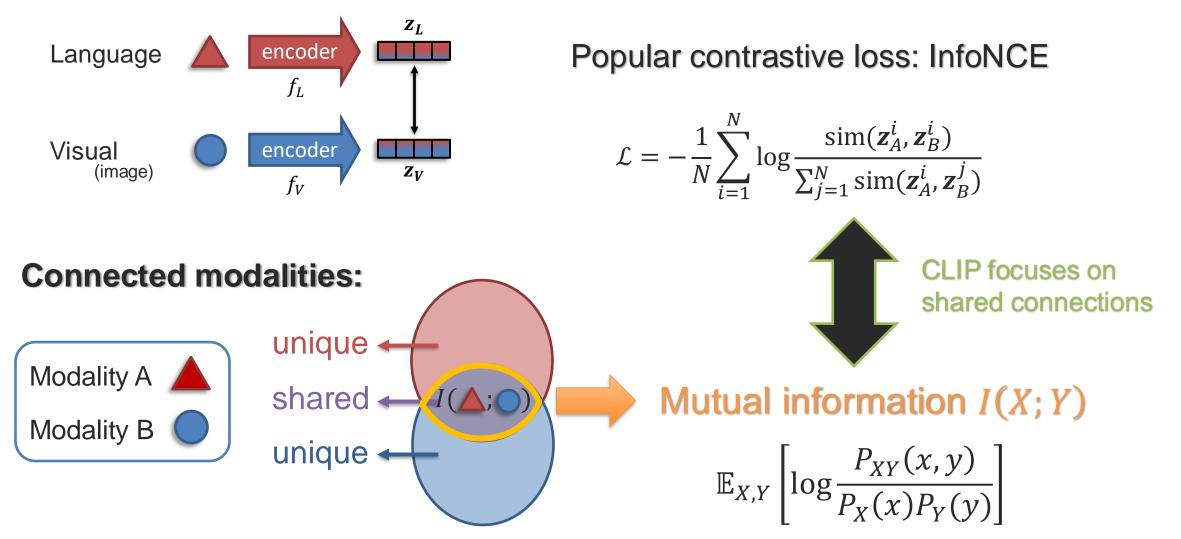


✓ a photo of guacamole, a type of food.

- × a photo of **ceviche**, a type of food.
- × a photo of edamame, a type of food.
- × a photo of tuna tartare, a type of food.
- × a photo of hummus, a type of food.

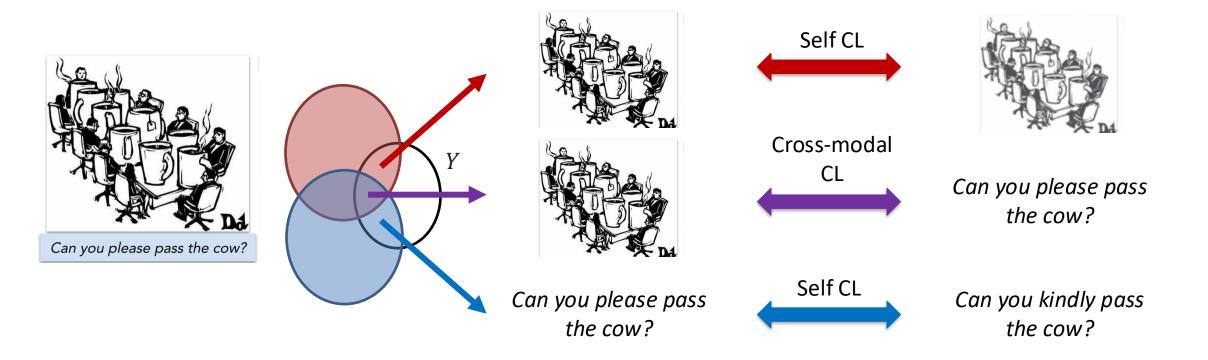
[Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021]

Contrastive Learning and Connected Modalities



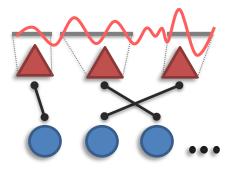
[Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021]

Factorized Contrastive Learning



Learns both shared and unique information.

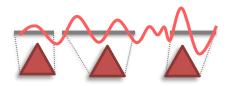
[Liang et al., Factorized Contrastive Learning: Going Beyond Multi-view Redundancy, NeurIPS 2023]



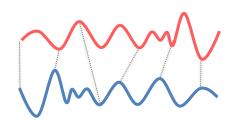
Definition: Model alignment between modalities with continuous signals and no explicit elements

Continuous warping

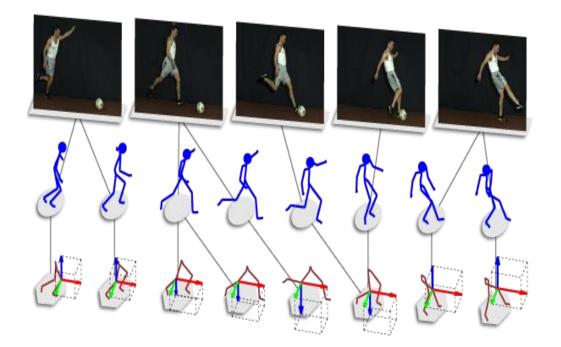
Discretization (segmentation)



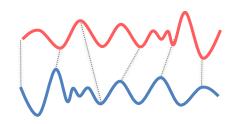
[original slide co-developed with Louis-Philippe Morency for CMU course 11-777]

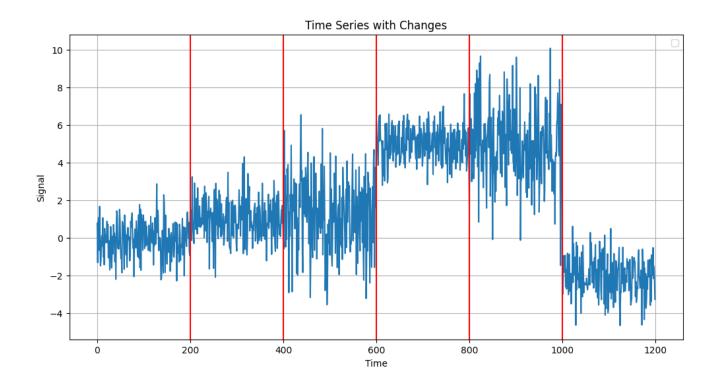


Aligning video sequences

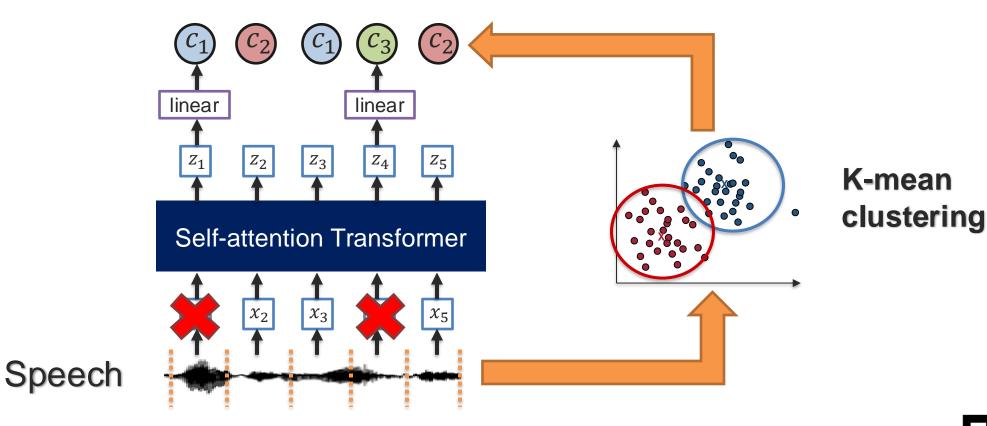


[original slide co-developed with Louis-Philippe Morency for CMU course 11-777] [Zhou and De la Torre. Canonical Time Warping for Alignment of Human Behavior, NeurIPS 2009]





HUBERT: Hidden-Unit BERT



[original slide co-developed with Louis-Philippe Morency for CMU course 11-777] [Hsu et al., HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units, IEEE TASLP 2021]

Today's lecture

Introduction to multimodal AI

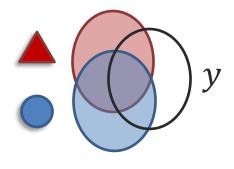
Principles of heterogeneity, connections, interactions

Core multimodal challenges

Multimodal alignment

Summary: How To Multimodal

- 1. Think about data heterogeneity, connections, interactions.
- 2. Decide how much data in each modality to collect, and how much to label (costs and time).
- Clean data: normalize/standardize, find noisy data, anomaly/outlier detection
 Visualize data: plot, dimensionality reduction (PCA, t-sne), cluster analysis
 Decide on evaluation metric (proxy + real, quantitative and qualitative)
 Figure out what challenge and sub-challenge, and latest work in that space.
 Decide whether to build on prior work, try general-purpose or domain-specific models, top-down vs bottom-up research etc.



Assignments for This Coming Week

Reading assignment due tomorrow Wednesday (3/5).

This Thursday (3/6): second reading discussion on modern Al architectures.

- 1. Scaling laws for multimodal models
- 2. Not all tokens are all you need?

For project:

- I gave feedback and assigned primary TA.
- Meet with me and primary TA every other week.

Next Tuesday: lecture on **multimodal representation fusion**

